Android’s use of okhttp may trigger a point of oom

There is a problem: you need to add signature verification to all requests to prevent brushing the interface; The incoming request URL and body generate a text string and send it to the server as a header; There are ready-made signature verification methods: string dosignature (string URL, byte [] body); The current network library is based on com.squareup.okhttp3: okhttp: 3.14.2. This is very simple. Of course, it is good to write an interceptor and then pass in the URL and body of the request object. Therefore:

public class SignInterceptor implements Interceptor {
  @NonNull
  @Override
  public Response intercept(@NonNull Chain chain) throws IOException {
    Request request = chain.request();
    RequestBody body = request.body();
    byte[] bodyBytes = null;
    if (body != null) {
      final Buffer buffer = new Buffer();
      body.writeTo(buffer);
      bodyBytes = buffer.readByteArray();
    }

    Request.Builder builder = request.newBuilder();
    HttpUrl oldUrl = request.url();
    final String url = oldUrl.toString();
    final String signed = doSignature(url,bodyBytes));
    if (!TextUtils.isEmpty(signed)) {
      builder.addHeader(SIGN_KEY_NAME,signed);
    }
    return chain.proceed(builder.build());
  }
}@H_404_4@

okhttp的ReqeustBody是一个抽象类,内容输出只有writeTo方法,将内容写入到一个BufferedSink接口实现体里,然后再将数据转成byte[]也就是内存数组.能达到目的的类只有Buffer,它实现了BufferedSink接口并能提供转成内存数组的方法readByteArray. 这貌似没啥问题呀,能造成OOM?

是的,要看请求类型,如果是一个上传文件的接口呢?如果这个文件比较大呢?上传接口有可能会用到public static RequestBody create(final @Nullable MediaType contentType,final File file)方法,如果是针对文件的实现体它的writeTo方法是sink.writeAll(source);而我们传给签名方法时用到的Buffer.readByteArray是将缓冲中的所有内容转成了内存数组,这意味着文件中的所有内容被转成了内存数组,就是在这个时机容易造成OOM! RequestBody.create源码如下:

 public static RequestBody create(final @Nullable MediaType contentType,final File file) {
  if (file == null) throw new NullPointerException("file == null");

  return new RequestBody() {
   @Override public @Nullable MediaType contentType() {
    return contentType;
   }

   @Override public long contentLength() {
    return file.length();
   }

   @Override public void writeTo(BufferedSink sink) throws IOException {
    try (Source source = Okio.source(file)) {
     sink.writeAll(source);
    }
   }
  };
 }
@H_404_4@

可以看到实现体持有了文件,Content-Length返回了文件的大小,内容全部转给了Source对象。

这确实是以前非常容易忽略的一个点,很少有对请求体作额外处理的操作,而一旦这个操作变成一次性的大内存分配,非常容易造成OOM. 所以要如何解决呢? 签名方法又是如何处理的呢? 原来这个签名方法在这里偷了个懒——它只读取传入body的前4K内容,然后只针对这部分内容进行了加密,至于传入的这个内存数组本身多大并不考虑,完全把风险和麻烦丢给了外部(优秀的SDK!).

快速方法当然是罗列白名单,针对上传接口服务端不进行加签验证,但这容易挂一漏万,而且增加维护成本,要签名方法sdk的人另写合适的接口等于要他们的命,所以还是得从根本解决. 既然签名方法只读取前4K内容,我们便只将内容的前4K部分读取再转成方法所需的内存数组不就可了? 所以我们的目的是: 期望RequestBody能够读取一部分而不是全部的内容. 能否继承RequestBody重写它的writeTo? 可以,但不现实,不可能全部替代现有的RequestBody实现类,同时ok框架也有可能创建私有的实现类. 所以只能针对writeTo的参数BufferedSink作文章,先得了解BufferedSink又是如何被okhttp框架调用的.

BufferedSink相关的类包括Buffer,Source,都属于okio框架,okhttp只是基于okio的一坨,okio没有直接用java的io操作,而是另行写了一套io操作,具体是数据缓冲的操作.接上面的描述,Source是怎么创建,同时又是如何操作BufferedSink的? 在Okio.java中:

 public static Source source(File file) throws FileNotFoundException {
  if (file == null) throw new IllegalArgumentException("file == null");
  return source(new FileInputStream(file));
 }

 public static Source source(InputStream in) {
  return source(in,new Timeout());
 }

 private static Source source(final InputStream in,final Timeout timeout) {
  return new Source() {
   @Override public long read(Buffer sink,long byteCount) throws IOException {
    try {
     timeout.throwIfReached();
     Segment tail = sink.writableSegment(1);
     int maxToCopy = (int) Math.min(byteCount,Segment.SIZE - tail.limit);
     int bytesRead = in.read(tail.data,tail.limit,maxToCopy);
     if (bytesRead == -1) return -1;
     tail.limit += bytesRead;
     sink.size += bytesRead;
     return bytesRead;
    } catch (AssertionError e) {
     if (isAndroidGetsocknameError(e)) throw new IOException(e);
     throw e;
    }
   }

   @Override public void close() throws IOException {
    in.close();
   }

   @Override public Timeout timeout() {
    return timeout;
   }
  };
 }
@H_404_4@

Source把文件作为输入流inputstream进行了各种读操作,但是它的read方法参数却是个Buffer实例,它又是从哪来的,又怎么和BufferedSink关联的? 只好再继续看BufferedSink.writeAll的实现体。

BufferedSink的实现类就是Buffer, 然后它的writeAll方法:

 @Override public long writeAll(Source source) throws IOException {
  if (source == null) throw new IllegalArgumentException("source == null");
  long totalBytesRead = 0;
  for (long readCount; (readCount = source.read(this,Segment.SIZE)) != -1; ) {
   totalBytesRead += readCount;
  }
  return totalBytesRead;
 }
@H_404_4@

原来是显式的调用了Source.read(Buffer,long)方法,这样就串起来了,那个Buffer参数原来就是自身。

基本可以确定只要实现BufferedSink接口类,然后判断读入的内容超过指定大小就停止写入就返回就可满足目的,可以名之FixedSizeSink.

然而麻烦的是BufferedSink的接口非常多,将近30个方法, 不知道框架会在什么时机调用哪个方法,只能全部都实现! 其次是接口方法的参数有很多okio的类,这些类的用法需要了解,否则一旦用错了效果适得其反. 于是对一个类的了解变成对多个类的了解,没办法只能硬着头皮写.

一个接口就有点蛋疼: Buffer buffer(); BufferedSink返回一个Buffer实例供外部调用,BufferedSink的实现体即是Buffer,然后再返回一个Buffer?! 看了半天猜测BufferedSink是为了提供一个可写入的缓冲对象,但框架作者也懒的再搞接口解耦的那一套了(唉,大家都是怎么简单怎么来). 于是FixedSizeSink至少需要持有一个Buffer对象,它作实际的数据缓存,同时可以在需要Source.read(Buffer,long)的地方作为参数传过去.

同时可以看到RequestBody的一个实现类FormBody,用这个Buffer对象直接写入一些数据:

 private long writeOrCountBytes(@Nullable BufferedSink sink,boolean countBytes) {
  long byteCount = 0L;

  Buffer buffer;
  if (countBytes) {
   buffer = new Buffer();
  } else {
   buffer = sink.buffer();
  }

  for (int i = 0,size = encodedNames.size(); i < size; i++) {
   if (i > 0) buffer.writeByte('&');
   buffer.writeUtf8(encodedNames.get(i));
   buffer.writeByte('=');
   buffer.writeUtf8(encodedValues.get(i));
  }

  if (countBytes) {
   byteCount = buffer.size();
   buffer.clear();
  }

  return byteCount;
 }
@H_404_4@

有这样的操作就有可能限制不了缓冲区大小变化!不过数据量应该相对小一些而且这种用法场景相对少,我们指定的大小应该能覆盖的了这种情况。

接着还有一个接口BufferedSink write(ByteString byteString),又得了解ByteString怎么使用,真是心力交瘁啊...

 @Override public Buffer write(ByteString byteString) {
  byteString.write(this);
  return this;
 }
@H_404_4@

Buffer实现体里可以直接调用ByteString.write(Buffer)因为是包名访问,自己实现的FixedSizeSink声明在和同一包名package okio;也可以这样使用,如果是其它包名只能先转成byte[]了,ByteString应该不大不然也不能这么搞(没有找到ByteString读取一段数据的方法):

  @Override
  public BufferedSink write(@NotNull ByteString byteString) throws IOException {
    byte[] bytes = byteString.toByteArray();
    this.write(bytes);
    return this;
  }
@H_404_4@

总之就是把这些对象转成内存数组或者Buffer能够接受的参数持有起来!

重点关心的writeAll反而相对好实现一点,我们连续读取指定长度的内容直到内容长度达到我们的阈值就行.

还有一个蛋疼的点是各种对象的read/write数据流方向:

Caller.read(Callee)/Caller.write(Callee),有的是从Caller到Callee,有的是相反,被一个小类整的有点头疼……

最后上完整代码,如果发现什么潜在的问题也可以交流下~:

public class FixedSizeSink implements BufferedSink {
  private static final int SEGMENT_SIZE = 4096;
  private final Buffer mBuffer = new Buffer();
  private final int mLimitSize;

  private FixedSizeSink(int size) {
    this.mLimitSize = size;
  }

  @Override
  public Buffer buffer() {
    return mBuffer;
  }

  @Override
  public BufferedSink write(@NotNull ByteString byteString) throws IOException {
    byte[] bytes = byteString.toByteArray();
    this.write(bytes);
    return this;
  }

  @Override
  public BufferedSink write(@NotNull byte[] source) throws IOException {
    this.write(source,source.length);
    return this;
  }

  @Override
  public BufferedSink write(@NotNull byte[] source,int offset,int byteCount) throws IOException {
    long available = mLimitSize - mBuffer.size();
    int count = Math.min(byteCount,(int) available);
    android.util.Log.d(TAG,String.format("FixedSizeSink.offset=%d,"
             "count=%d,limit=%d,size=%d",offset,byteCount,mLimitSize,mBuffer.size()));
    if (count > 0) {
      mBuffer.write(source,count);
    }
    return this;
  }

  @Override
  public long writeAll(@NotNull Source source) throws IOException {
    this.write(source,mLimitSize);
    return mBuffer.size();
  }

  @Override
  public BufferedSink write(@NotNull Source source,long byteCount) throws IOException {
    final long count = Math.min(byteCount,mLimitSize - mBuffer.size());
    final long BUFFER_SIZE = Math.min(count,SEGMENT_SIZE);
    android.util.Log.d(TAG,String.format("FixedSizeSink.count=%d,limit=%d"
             ",size=%d,segment=%d",mBuffer.size(),BUFFER_SIZE));
    long totalBytesRead = 0;
    long readCount;
    while (totalBytesRead < count && (readCount = source.read(mBuffer,BUFFER_SIZE)) != -1) {
      totalBytesRead = readCount;
    }
    return this;
  }

  @Override
  public int write(ByteBuffer src) throws IOException {
    final int available = mLimitSize - (int) mBuffer.size();
    if (available < src.remaining()) {
      byte[] bytes = new byte[available];
      src.get(bytes);
      this.write(bytes);
      return bytes.length;
    } else {
      return mBuffer.write(src);
    }
  }

  @Override
  public void write(@NotNull Buffer source,long byteCount) throws IOException {
    mBuffer.write(source,Math.min(byteCount,mLimitSize - mBuffer.size()));
  }

  @Override
  public BufferedSink writeUtf8(@NotNull String string) throws IOException {
    mBuffer.writeUtf8(string);
    return this;
  }

  @Override
  public BufferedSink writeUtf8(@NotNull String string,int beginIndex,int endIndex)
      throws IOException {
    mBuffer.writeUtf8(string,beginIndex,endIndex);
    return this;
  }

  @Override
  public BufferedSink writeUtf8CodePoint(int codePoint) throws IOException {
    mBuffer.writeUtf8CodePoint(codePoint);
    return this;
  }

  @Override
  public BufferedSink writeString(@NotNull String string,@NotNull Charset charset) throws IOException {
    mBuffer.writeString(string,charset);
    return this;
  }

  @Override
  public BufferedSink writeString(@NotNull String string,int endIndex,endIndex,charset);
    return this;
  }

  @Override
  public BufferedSink writeByte(int b) throws IOException {
    mBuffer.writeByte(b);
    return this;
  }

  @Override
  public BufferedSink writeShort(int s) throws IOException {
    mBuffer.writeShort(s);
    return this;
  }

  @Override
  public BufferedSink writeShortLe(int s) throws IOException {
    mBuffer.writeShortLe(s);
    return this;
  }

  @Override
  public BufferedSink writeInt(int i) throws IOException {
    mBuffer.writeInt(i);
    return this;
  }

  @Override
  public BufferedSink writeIntLe(int i) throws IOException {
    mBuffer.writeIntLe(i);
    return this;
  }

  @Override
  public BufferedSink writeLong(long v) throws IOException {
    mBuffer.writeLong(v);
    return this;
  }

  @Override
  public BufferedSink writeLongLe(long v) throws IOException {
    mBuffer.writeLongLe(v);
    return this;
  }

  @Override
  public BufferedSink writeDecimalLong(long v) throws IOException {
    mBuffer.writeDecimalLong(v);
    return this;
  }

  @Override
  public BufferedSink writeHexadecimalUnsignedLong(long v) throws IOException {
    mBuffer.writeHexadecimalUnsignedLong(v);
    return this;
  }

  @Override
  public void flush() throws IOException {
    mBuffer.flush();
  }

  @Override
  public BufferedSink emit() throws IOException {
    mBuffer.emit();
    return this;
  }

  @Override
  public BufferedSink emitCompleteSegments() throws IOException {
    mBuffer.emitCompleteSegments();
    return this;
  }

  @Override
  public OutputStream outputStream() {
    return mBuffer.outputStream();
  }

  @Override
  public boolean isopen() {
    return mBuffer.isopen();
  }

  @Override
  public Timeout timeout() {
    return mBuffer.timeout();
  }

  @Override
  public void close() throws IOException {
    mBuffer.close();
  }
}@H_404_4@

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

总结

以上是编程之家为你收集整理的android 使用okhttp可能引发OOM的一个点全部内容,希望文章能够帮你解决android 使用okhttp可能引发OOM的一个点所遇到的程序开发问题。

如果觉得编程之家网站内容还不错,欢迎将编程之家网站推荐给程序员好友。

本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。
喜欢与人分享编程技术与工作经验,欢迎加入编程之家官方交流群!

The content of this article comes from the network collection of netizens. It is used as a learning reference. The copyright belongs to the original author.
THE END
分享
二维码
< <上一篇
下一篇>>