Check whether the fastest method in string can be resolved to double in Java
•
Java
I know there are a million ways to do this, but what's the fastest? This should include scientific notation
Note: I'm not interested in converting values to double, I just want to know if it's possible Private Boolean isdouble (string value)
Solution
You can check it using the same regular expression used by the double class Here is a good record:
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#valueOf%28java.lang.String%29
This is the code section:
final String Digits = "(\\p{Digit}+)"; final String HexDigits = "(\\p{XDigit}+)"; // an exponent is 'e' or 'E' followed by an optionally // signed decimal integer. final String Exp = "[eE][+-]?"+Digits; final String fpRegex = ("[\\x00-\\x20]*"+ // Optional leading "whitespace" "[+-]?(" + // Optional sign character "NaN|" + // "NaN" string "Infinity|" + // "Infinity" string // A decimal floating-point string representing a finite positive // number without a leading sign has at most five basic pieces: // Digits . Digits ExponentPart FloatTypeSuffix // // Since this method allows integer-only strings as input // in addition to strings of floating-point literals,the // two sub-patterns below are simplifications of the grammar // productions from the Java Language Specification,2nd // edition,section 3.10.2. // Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt "((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+ // . Digits ExponentPart_opt FloatTypeSuffix_opt "(\\.("+Digits+")("+Exp+")?)|"+ // Hexadecimal strings "((" + // 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt "(0[xX]" + HexDigits + "(\\.)?)|" + // 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt "(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" + ")[pP][+-]?" + Digits + "))" + "[fFdD]?))" + "[\\x00-\\x20]*");// Optional trailing "whitespace" if (Pattern.matches(fpRegex,myString)) Double.valueOf(myString); // Will not throw NumberFormatException else { // Perform suitable alternative action }
The content of this article comes from the network collection of netizens. It is used as a learning reference. The copyright belongs to the original author.
THE END
二维码