Java – how to use spark to process a series of HBase rows?
•
Java
I tried to use HBase as the spark data source So the first step is to create an RDD from the HBase table Because spark uses Hadoop input format, I can create RDD http://www.vidyasource.com/blog/Programming/Scala/Java/Data/Hadoop/Analytics/2014/01/25/lighting-a-spark-with-hbase Find a way to use all rows But how to create an RDD for range scanning?
All suggestions are welcome
Solution
The following is an example of using a scan in spark:
import java.io.{DataOutputStream,ByteArrayOutputStream} import java.lang.String import org.apache.hadoop.hbase.client.Scan import org.apache.hadoop.hbase.HBaseConfiguration import org.apache.hadoop.hbase.io.ImmutableBytesWritable import org.apache.hadoop.hbase.client.Result import org.apache.hadoop.hbase.mapreduce.TableInputFormat import org.apache.hadoop.hbase.util.Base64 def convertScanToString(scan: Scan): String = { val out: ByteArrayOutputStream = new ByteArrayOutputStream val dos: DataOutputStream = new DataOutputStream(out) scan.write(dos) Base64.encodeBytes(out.toByteArray) } val conf = HBaseConfiguration.create() val scan = new Scan() scan.setCaching(500) scan.setCacheBlocks(false) conf.set(TableInputFormat.INPUT_TABLE,"table_name") conf.set(TableInputFormat.SCAN,convertScanToString(scan)) val rdd = sc.newAPIHadoopRDD(conf,classOf[TableInputFormat],classOf[ImmutableBytesWritable],classOf[Result]) rdd.count
You need to add relevant libraries to the spark classpath and ensure that they are compatible with your spark Tip: you can find them using HBase classpath
The content of this article comes from the network collection of netizens. It is used as a learning reference. The copyright belongs to the original author.
THE END
二维码