Multithreading – use omnithreadlibrary to write arrays that are slower in parallel than in serial
I am studying the implementation of differential evolution optimization algorithm and hope to speed up the computing time by parallel computing group members
I have simplified the code to its essence to test parallelization, and the reduced version shows the same problem: the parallel version is slower than the serial version
The key is that I passed multiple dynamic arrays and should write an output for each member Each array has a dimension dedicated to filling members, so for each filling member, access a different set of array indexes This also means that in a parallel implementation, no two threads will write to the same array element
Under the code I used to test (the actual code in differential evolution has a dowork procedure with more const parameters and VaR arrays)
unit Unit1; interface type TGoalFunction = reference to function(const X,B: array of extended): extended; TArrayExtended1D = array of extended; TArrayExtended2D = array of TArrayExtended1D; TClassToTest = class abstract private class procedure DoWork(const AGoalFunction: TGoalFunction; const AInputArray: TArrayExtended2D; var AOutputArray1: TArrayExtended1D; var AOutputArray2: TArrayExtended2D; const AIndex,AIndex2: integer); public class procedure RunSerial; class procedure RunParallel; end; function HyperSphere(const X,B: array of extended): extended; const DIMENSION1 = 5000; DIMENSION2 = 5000; LOOPS = 10; implementation uses OtlParallel; function HyperSphere(const X,B: array of extended): extended; var I: Integer; begin Result := 0; for I := 0 to Length(X) - 1 do Result := Result + X[I]*X[I]; end; { TClassToTest } class procedure TClassToTest.DoWork(const AGoalFunction: TGoalFunction; const AInputArray: TArrayExtended2D; var AOutputArray1: TArrayExtended1D; var AOutputArray2: TArrayExtended2D; const AIndex,AIndex2: integer); var I: Integer; begin AOutputArray1[AIndex] := AGoalFunction(AInputArray[AIndex],[]); for I := 0 to Length(AOutputArray2[AIndex]) - 1 do AOutputArray2[AIndex,I] := Random*AIndex2; end; class procedure TClassToTest.RunParallel; var LGoalFunction: TGoalFunction; LInputArray: TArrayExtended2D; LOutputArray1: TArrayExtended1D; LOutputArray2: TArrayExtended2D; I,J,K: Integer; begin SetLength(LInputArray,DIMENSION1,DIMENSION2); for I := 0 to DIMENSION1 - 1 do begin for J := 0 to DIMENSION2 - 1 do LInputArray[I,J] := Random; end; SetLength(LOutputArray1,DIMENSION1); SetLength(LOutputArray2,DIMENSION2); LGoalFunction := HyperSphere; for I := 0 to LOOPS - 1 do begin Parallel.ForEach(0,DIMENSION1 - 1).Execute( procedure (const value: integer) begin DoWork(LGoalFunction,LInputArray,LOutputArray1,LOutputArray2,value,I); end ); for J := 0 to DIMENSION1 - 1 do begin for K := 0 to DIMENSION2 - 1 do LInputArray[J,K] := LOutputArray2[J,K]; end; end; end; class procedure TClassToTest.RunSerial; var LGoalFunction: TGoalFunction; LInputArray: TArrayExtended2D; LOutputArray1: TArrayExtended1D; LOutputArray2: TArrayExtended2D; I,DIMENSION2); LGoalFunction := HyperSphere; for I := 0 to LOOPS - 1 do begin for J := 0 to DIMENSION1 - 1 do begin DoWork(LGoalFunction,I); end; for J := 0 to DIMENSION1 - 1 do begin for K := 0 to DIMENSION2 - 1 do LInputArray[J,K]; end; end; end; end.@H_301_19@我期待在我的8核处理器上加速大约x6,但是面临轻微的减速.我应该更改什么来提高并行运行DoWork过程的速度?
请注意,我宁愿保留DoWork过程中的实际工作,因为我必须能够在有和没有并行化(布尔标志)的情况下调用相同的算法,同时保持代码的主体共享以便于维护
Solution
This is due to random's lack of thread safety Its implementation is:
// global var var RandSeed: Longint = 0; { Base for random number generator } function Random: Extended; const two2neg32: double = ((1.0/$10000) / $10000); // 2^-32 var Temp: Longint; F: Extended; begin Temp := RandSeed * $08088405 + 1; RandSeed := Temp; F := Int64(Cardinal(Temp)); Result := F * two2neg32; end;@H_301_19@因为RandSeed是一个全局变量,通过调用Random来修改,所以线程最终会对RandSeed进行争用写入.那些争用的写入会导致您的性能问题.它们有效地序列化您的并行代码.严重到足以让它比真正的串行代码慢.
将以下代码添加到设备实施部分的顶部,您将看到不同之处:
threadvar RandSeed: Longint; function Random: Double; const two2neg32: double = ((1.0/$10000) / $10000); // 2^-32 var Temp: Longint; F: Double; begin Temp := RandSeed * $08088405 + 1; RandSeed := Temp; F := Int64(Cardinal(Temp)); Result := F * two2neg32; end;@H_301_19@通过这种更改来避免共享,争用写入,您会发现并行版本更快,正如预期的那样.您不会使用处理器计数进行线性缩放.我的猜测是因为你的内存访问模式在代码的并行版本中是次优的.
我猜你只是用Random作为生成一些数据的手段.但是如果你确实需要一个RNG,你需要安排每个任务使用他们自己的RNG私有实例.
您还可以使用Sqr(X)而不是X * X加速代码,也可以切换到Double而不是Extended.