Multithreading – use omnithreadlibrary to write arrays that are slower in parallel than in serial

I am studying the implementation of differential evolution optimization algorithm and hope to speed up the computing time by parallel computing group members

I have simplified the code to its essence to test parallelization, and the reduced version shows the same problem: the parallel version is slower than the serial version

The key is that I passed multiple dynamic arrays and should write an output for each member Each array has a dimension dedicated to filling members, so for each filling member, access a different set of array indexes This also means that in a parallel implementation, no two threads will write to the same array element

Under the code I used to test (the actual code in differential evolution has a dowork procedure with more const parameters and VaR arrays)

unit Unit1;

interface

type
  TGoalFunction = reference to function(const X,B: array of extended): extended;
  TArrayExtended1D = array of extended;
  TArrayExtended2D = array of TArrayExtended1D;

  TClassToTest = class abstract
  private
    class procedure DoWork(const AGoalFunction: TGoalFunction; const AInputArray: TArrayExtended2D; var AOutputArray1: TArrayExtended1D; var AOutputArray2: TArrayExtended2D; const AIndex,AIndex2: integer);
  public
    class procedure RunSerial;
    class procedure RunParallel;
  end;

function HyperSphere(const X,B: array of extended): extended;

const
  DIMENSION1 = 5000;
  DIMENSION2 = 5000;
  LOOPS = 10;

implementation

uses
  OtlParallel;

function HyperSphere(const X,B: array of extended): extended;
var
  I: Integer;
begin
  Result := 0;
  for I := 0 to Length(X) - 1 do
    Result := Result + X[I]*X[I];
end;

{ TClassToTest }

class procedure TClassToTest.DoWork(const AGoalFunction: TGoalFunction; const AInputArray: TArrayExtended2D; var AOutputArray1: TArrayExtended1D; var AOutputArray2: TArrayExtended2D; const AIndex,AIndex2: integer);
var
  I: Integer;
begin
  AOutputArray1[AIndex] := AGoalFunction(AInputArray[AIndex],[]);
  for I := 0 to Length(AOutputArray2[AIndex]) - 1 do
    AOutputArray2[AIndex,I] := Random*AIndex2;
end;

class procedure TClassToTest.RunParallel;
var
  LGoalFunction: TGoalFunction;
  LInputArray: TArrayExtended2D;
  LOutputArray1: TArrayExtended1D;
  LOutputArray2: TArrayExtended2D;
  I,J,K: Integer;
begin
  SetLength(LInputArray,DIMENSION1,DIMENSION2);
  for I := 0 to DIMENSION1 - 1 do
  begin
    for J := 0 to DIMENSION2 - 1 do
      LInputArray[I,J] := Random;
  end;
  SetLength(LOutputArray1,DIMENSION1);
  SetLength(LOutputArray2,DIMENSION2);

  LGoalFunction := HyperSphere;

  for I := 0 to LOOPS - 1 do
  begin
    Parallel.ForEach(0,DIMENSION1 - 1).Execute(
      procedure (const value: integer)
      begin
        DoWork(LGoalFunction,LInputArray,LOutputArray1,LOutputArray2,value,I);
      end
    );

    for J := 0 to DIMENSION1 - 1 do
    begin
      for K := 0 to DIMENSION2 - 1 do
        LInputArray[J,K] := LOutputArray2[J,K];
    end;
  end;
end;

class procedure TClassToTest.RunSerial;
var
  LGoalFunction: TGoalFunction;
  LInputArray: TArrayExtended2D;
  LOutputArray1: TArrayExtended1D;
  LOutputArray2: TArrayExtended2D;
  I,DIMENSION2);

  LGoalFunction := HyperSphere;

  for I := 0 to LOOPS - 1 do
  begin
    for J := 0 to DIMENSION1 - 1 do
    begin
      DoWork(LGoalFunction,I);
    end;

    for J := 0 to DIMENSION1 - 1 do
    begin
      for K := 0 to DIMENSION2 - 1 do
        LInputArray[J,K];
    end;
  end;
end;

end.@H_301_19@ 
 

我期待在我的8核处理器上加速大约x6,但是面临轻微的减速.我应该更改什么来提高并行运行DoWork过程的速度?

请注意,我宁愿保留DoWork过程中的实际工作,因为我必须能够在有和没有并行化(布尔标志)的情况下调用相同的算法,同时保持代码的主体共享以便于维护

Solution

This is due to random's lack of thread safety Its implementation is:

// global var
var
  RandSeed: Longint = 0;    { Base for random number generator }

function Random: Extended;
const
  two2neg32: double = ((1.0/$10000) / $10000);  // 2^-32
var
  Temp: Longint;
  F: Extended;
begin
  Temp := RandSeed * $08088405 + 1;
  RandSeed := Temp;
  F  := Int64(Cardinal(Temp));
  Result := F * two2neg32;
end;@H_301_19@ 
 

因为RandSeed是一个全局变量,通过调用Random来修改,所以线程最终会对RandSeed进行争用写入.那些争用的写入会导致您的性能问题.它们有效地序列化您的并行代码.严重到足以让它比真正的串行代码慢.

将以下代码添加到设备实施部分的顶部,您将看到不同之处:

threadvar
  RandSeed: Longint;

function Random: Double;
const
  two2neg32: double = ((1.0/$10000) / $10000);  // 2^-32
var
  Temp: Longint;
  F: Double;
begin
  Temp := RandSeed * $08088405 + 1;
  RandSeed := Temp;
  F  := Int64(Cardinal(Temp));
  Result := F * two2neg32;
end;@H_301_19@ 
 

通过这种更改来避免共享,争用写入,您会发现并行版本更快,正如预期的那样.您不会使用处理器计数进行线性缩放.我的猜测是因为你的内存访问模式在代码的并行版本中是次优的.

我猜你只是用Random作为生成一些数据的手段.但是如果你确实需要一个RNG,你需要安排每个任务使用他们自己的RNG私有实例.

您还可以使用Sqr(X)而不是X * X加速代码,也可以切换到Double而不是Extended.

The content of this article comes from the network collection of netizens. It is used as a learning reference. The copyright belongs to the original author.
THE END
分享
二维码
< <上一篇
下一篇>>